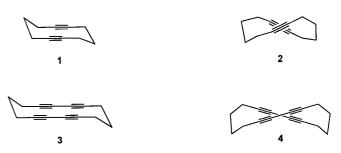
Molecular Structures of Cyclotetradeca-1,3,8,10-tetrayne and Cyclohexadeca-1,3,9,11-tetrayne

Rolf Gleiter,* $^{[a]}$ Roland Merger, $^{[a]}$ Jorge Chavez, $^{[a]}$ Thomas Oeser, $^{[a]}$ Hermann Irngartinger, $^{[a]}$ Hans Pritzkow, $^{[b]}$ and Bernhard Nuber $^{[b]}$


Keywords: Medium-sized rings / Alkynes / Structure elucidation / X-ray diffraction / Cyclic compounds

Cyclotetradeca-1,3,8,10-tetrayne (3) and cyclohexadeca-1,3,9,11-tetrayne (4) have been prepared according to Sondheimer et al. The X-ray crystal structures of 3 and 4 reveal them to be in the chair conformation (3) and the twisted chair-chair-conformation (4). The tetrayne units in

both molecules deviate considerably from linearity, giving rise to transannular distances of the terminal sp centers of 3.098(2) Å (3) and 4.147(2), 4.196(2) Å (4), and 3.390(2) Å (3) and 4.251(2), 4.252(2) Å (4) for the central sp atoms, respectively.

The lowest energy conformations of cyclohexane are the chair and the twist forms.^[1] Among the ten symmetrical conformations possible for cyclooctane the most stable ones are the boat-chair and the twist-boat-chair conformations.^[1] These conformations are the result of minimizing torsionand angle strain as well as transannular interactions in the corresponding ring systems. The replacement of two opposite C-C bonds in cyclohexane or cyclooctane by one alkyne group each leads to 1,6-cyclodecadiyne (1) or 1,7cyclododecadiyne (2). In the cases of 1 and 2 the chair and chair-chair conformations, respectively, were found in the solid state. [2] The higher flexibility of the ten-membered ring with two triple bonds was shown by studying 1,6-diazacyclodeca-3,8-diyne and several of its 1,6-disubstituted derivatives in solution and in the solid state.[3] To extend our studies to species with two butadiyne units we investigated the structures of cyclotetradeca-1,3,8,10-tetrayne (3) and cyclohexadeca-1,3,9,11-tetrayne (4). The synthesis of 3 and 4 has been reported by Sondheimer et al. [4] Earlier X-ray studies on single crystals of 3 revealed the presence of a center of symmetry (space group P2₁/c) which implies a chair conformation for 3 in the solid state. [4] To learn more about the structures of 3 and 4 in the solid state we reinvestigated single crystals of 3 and 4. The most relevant structural parameters of 3 and 4 obtained from our X-ray studies are displayed in Figure 1. The average bond lengths were found to be 1.19 Å for the triple bonds and 1.39 Å for the sp-sp single bonds. All the 1,3-butadiyne units deviate considerably from linearity. The bond angles at the central sp centers of 3 amount to 173°, while those at the terminal sp centers vary between 176° and 178°. In the case of 4 the bond angles at the terminal sp centers are smaller (173° to 175°) than those at the central sp centers (176° to 178°). Due to the greater bending at the central sp centers the transannular distance between the triple bonds is longer at

these centers [3: 3.390 (2) Å, 4: 4.251(2), 4.252(2) Å] than at the terminal centers [3: 3.098 (2) Å, 4: 4.147(2), 4.196(2) Å]. The latter distances are close to the transannular distances in 1 (2.99 Å) and 2 (4.06 Å).

The CCC bond angles at the sp³ centers in 3 vary between 114° and 116°, while in the less-strained 16-membered ring the CCC-bond angles lie between 110° and 114°. As anticipated from the work of Sondheimer et al. the 14-membered ring in 3 adopts the chair conformation, while 4 adopts a twisted chair-chair conformation as does 2. [2] In 4 the torsion angle between the triple bonds amounts to 16.5°; for 2 the angle between the opposite triple bonds was found to be 24°. [2]

So far only four other X-ray studies of cyclic tetraynes have been reported. The compounds studied were 5,5,6,6,11,11,12,12-octamethylcyclododeca-1,3,7,9-tetrayne (5), $^{[5]}$ 5,5,6,6-bis(1,2-cyclohexylene)-11,11,12,12-tetramethylcyclododeca-1,3,7,9-tetrayne (6), $^{[6]}$ 2',3',10',11'-tetra-n-butyldibenzo(e,k)-cyclododeca-1,3,7,9-tetrayne-5,11-diene (7) $^{[7]}$ and 1,2,7,8-tetrakis(triisopropylsilylethynyl)cyclododeca-1,7-diene-3,5,9,11-tetrayne (8). $^{[8]}$

In 5–8 the two tetrayne units are incorporated into a planar or almost planar 12-membered ring system which imposes a higher strain on the system than in 3 or 4. As a result the two tetrayne units in all four systems deviate considerably from linearity. The CCC angles at the sp atoms of the tetrayne unit vary from 165° to 167° and are smaller than those found in 3 or 4.

Gal Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany

[[]b] Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany

$$H_9C_4$$
 H_9C_4
 C_4H_9
 C_4H_9

The cyclic tetraynes 3 and 4, whose structures we have discussed above, are the first members of a series of tetraynes with alkyl chains between the tetrayne units in which the ring size is larger than C_{12} . Despite the longer chains between the butadiyne units, the latter still deviate from linearity.

C1-C4': 3.098; C2-C3': 3.390

Figure 1. Molecular structures of 3 and 4 with relevant bond lengths (A) and angles (°); the standard deviations of the bond lengths are in the range between 0.002 Å (3) and 0.004 Å (4); the deviations of the bond angles are in the range between $0.1-0.2^{\circ}$ (3) and $0.3-0.4^{\circ}$ (4)

C11-C16: 4.147; C1-C10: 4.251; C2-C9: 4.252; C3-C8: 4.196

Experimental Section

Preparation of Cyclotetradeca-1,3,8,10-tetrayne (3) and Cyclohexadeca-1,3,9,11-tetrayne (4): Compounds 3 and 4 were prepared ac-

cording to the procedure described by Sondheimer et al. $^{[4]}$ to yield 12% of 3 and 6% of 4.

3: ¹H NMR (300 MHz, CDCl₃): δ = 2.35–2.4 (m, 8 H), 1.7–1.8 (m, 4 H). - ¹³C NMR (75.46 MHz, CDCl₃): δ = 78.8 (s), 68.3 (s), 24.3 (t), 20.3 (t).

4: 1 H NMR (300 MHz, CDCl₃): δ = 2.22 (m, 8 H), 1.74 (m, 8 H). $^{-13}$ C NMR (75.46 MHz, CDCl₃): δ = 78.78 (s), 66.24 (s), 26.99 (t), 19.49 (t).

X-ray Structure Analyses of 3 and 4: The crystallographic data were collected with a Nonius-CAD4 diffractometer (3) or with a Syntex R3 diffractometer (4). The structures were solved by direct methods (3: MULTAN; $^{[9]}$ 4: SHELX 86^[11]). The structural parameters of the non-hydrogen atoms were refined anisotropically according to a full-matrix least squares method based on F (3) or F^2 (4) (3: MolEN; $^{[10]}$ 4: SHELXL-97 $^{[11]}$). The hydrogen atoms were refined isotropically. The crystallographic data are listed in Table 1.

Table 1. X-ray crystallographic data of 3 and 4

Compound	3	4
Empirical formula Molecular mass [g/mol]	C ₁₄ H ₁₂ 180.24	C ₁₆ H ₁₆ 208.29
Crystal size [mm]	$0.5 \times 0.45 \times 0.4$	$0.4 \times 0.3 \times 0.15$
Crystal color	slight yellow	yellow
Crystal system	monoclinic	orthorhombic
Space group	$P2_1/n$	Pbca
a [A]	8.207 (2)	8.937 (2)
b [A]	7.969 (1) 8.806 (2)	9.016 (3)
c [A] β [°]	113.32 (1)	31.901 (7) 90.0
$V[A^3]$	528.9 (2)	2570.5 (12)
$D_{calcd.}$ [Mg/m ³]	1.13	1.076
Z	2	8
F(000)	192	896
Temperature [K]	293	298
θ range [°]	2-28	2-25
μ [mm ⁻¹]	0.06	0.06
Refl. collected	1447	2262
Refl. unique	1265	2262
Refl. observed	935	931
$[I > 2.5 \sigma(I)]$ Variables	88	147
$(\Delta/\sigma)_{\text{max}}$	< 0.01	< 0.001
R	0.049	0.062
$R_{\rm w}^{[{ m a}]}$	0.069	0.151
S (Gof)	3.14	0.917
$(\Delta \rho)_{\text{max}} [e \text{ Å}^{-3}]$	0.26	0.12
$(\Delta \rho)_{\min}$ [e Å ⁻³]	-0.18	-0.14

[[]a] F for 3; F² for 4.

Crystallographic data for 3 and 4 have been deposited with the Cambridge Cristallographic Data Centre as supplementary publication no. CCDC-119113 (3), and CCDC-122734 (4). Copies of the data can be obtained free of charge on application to the Director, CCDC, 12 Union Road, Cambridge CB21E2, UK; [fax: (internat.) + 44-(1223)/336-033; E-mail: deposit@ccdc.cam.ac.uk].

Acknowledgments

We are grateful to the Deutsche Forschungsgemeinschaft (SFB 247), the Fonds der Chemischen Industrie and the BASF Aktiengesellschaft, Ludwigshafen, for financial support.

- [4] F. Sondheimer, Y. Amid, R. Wolovsky, J. Am. Chem. Soc. 1957,
- [5] K. N. Houk, L. T. Scott, N. G. Rondan, D. C. Spellmeyer, G. Reinhardt, J. L. Hyun, G. J. DeCicco, R. Weiss, M. H. M. Chen, L. S. Bass, J. Clardy, F. S. Jorgensen, T. A. Eaton, V. Sarkozi, C. M. Petit, L. Ng, K. D. Jordan, *J. Am. Chem. Soc.* 1985,
- [6] M. Kaftory, I. Agmon, M. Ladika, P. J. Stang, J. Am. Chem. Soc. 1987, 109, 782.
- [7] Q. Zhou, P. J. Carroll, T. M. Swager, J. Org. Chem. 1994, 59,
- J. Anthony, C. B. Knobler, F. Diederich, Angew. Chem. 1993,
- 1. Anthony, C. B. Khobler, T. Diederlen, Angew. Chem. 1993, 105, 437; Angew. Chem. Int. Ed. Engl. 1993, 32, 406. P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declercq and M. M. Woolfson, MULTAN II/82: System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data, Department of Physics, University of York, York, England 1982.
- [10] C. K. Fair, *MoIEN*: Structure Determination System, Nonius B. V., Röntgenweg 1, P. O. Box 811, 2624 BD Delft, The Netherlands, 1990.
- [11] G. M. Sheldrick, SHELXS-86, University of Göttingen 1986 and SHELXL-97 University of Göttingen 1997.

Received June 4, 1999 [O99323]

^[1] E. C. Eliel, S. H. Wilen, Stereochemistry of Organic Compounds, J. Wiley, New York, **1994**.

^[2] R. Gleiter, M. Karcher, W. Schäfer, R. Jahn, H. Irngartinger, Chem. Ber. 1988, 121, 735.

^[3] J. Ritter, R. Gleiter, H. Irngartinger, T. Oeser, J. Am. Chem. Soc. 1997, 119, 10599.